Aggregated Exposure Estimates for Fine Particulate Matter from Indoor and Outdoor Sources - and beyond -

Peter Fantke, Technical University of Denmark
Olivier Jolliet, University of Michigan
Natasha Hodas, California Institute of Technology, Pasadena
Joshua Apte, University of Texas in Austin
Miranda Loh, Institute of Occupational Medicine, Edinburgh
Thomas McKone, University of California, Berkeley
The Problem with $\text{PM}_{2.5}$

- Guidance lacking for particulate matter (PM) characterization factors in LCIA

Approach to the Problem

- Global initiative for $\text{PM}_{2.5}$ exposure/impacts framework
- Indoor, urban, and rural exposures
 - Exposures to outdoor sources
 - Exposures to indoor sources
- Non-linear exposure-response
- Matrix framework approach

- Case study on rice system results
- Continuing work and next steps
Overall Framework: Impact Pathway

- PM$_{2.5}$ mass as indicator for outdoor and indoor sources
- Exposure metric: intake fraction (start from Humbert et al. 2011)
- Summary health impacts metric: DALY (start from GBD2010/13)

Fantke et al. 2015, JLCA 20: 276-288
The Intake Fraction (iF)

\[iF = \frac{\text{Population Intake}}{\text{Total Emissions}} = \frac{P \cdot C_i \cdot In_i}{E} \]

- \(C_i \) : Concentration [g/m\(^3\)]
- \(In_i \) : Intake rate [m\(^3\)/person/d], for example breathing rate
- \(P \) : Population [persons]
- \(E \) : Emission rate [g/d]

Bennett et al. 2002, ES&T 36: 207A-211A
Archetypes Matrix Framework

Scenario/geographical archetypes → unknown source: emission-weighted iF

Fantke et al. 2017, ES&T 51: 9089-9100
Archetypes Aggregation Structure

Level 0 -- Default generic iF archetypes (global average)
- Outdoor & indoor
 - Outdoor: urban & rural areas
 - Indoor: residential & occupational settings

Level 1 -- Semi-generic iF archetypes
- Outdoor urban: city size classes (proxy: linear population density)
- Outdoor rural: parameterized geographical regions
- Indoor: ventilation & occupancy & recirculation/filtering classes

Level 2 -- Maximum disaggregated set of iF archetypes
- Outdoor: 3646 specific cities (>100,000 inhabitants in 2000)
- Indoor: specific residential and occupational building types (based on Hodas et al. 2016, Indoor Air)

Fantke et al. 2017, ES&T 51: 9089-9100
Archetypes Uncertainty

Level 0 – Default CF – Single Value *(with distribution)*

Level 1 -- Semi-Generic CFs -- 3 Archetypes *(urban, rural, remote)* *(with distributions)*

Level 2 – City-specific CFs *(with distributions)*

Archetypes Input Urban Areas
Exposure results (LPD vs. POP)

\[iF_{o,u} = 10^{1.84} \times DR^{-0.876} \times 10^{1.1016\alpha_x} \times POP^{1.1016\beta - 0.1016} \]

Fantke et al. 2017, ES&T 51: 9089-9100
Exposure results (iF distribution)

Fantke et al. 2017, ES&T 51: 9089-9100
Non-linear Exposure-Response

Apte et al. 2015, ES&T 49: 8057-8066
LCA Application: Rice Case Study

- We have selected rice production and consumption as overarching case study

Frischknecht et al. 2016, JLCA 21: 429-442
Rice Case: PM$_{2.5}$ Emissions

Emitted mass [kg] of fine particulate matter (PM$_{2.5}$), and precursors to secondary particles, i.e. SO$_2$, NH$_3$, and NO$_X$, per kilogram of cooked rice in the three scenarios.

Frischknecht et al. 2016, JLCA 21: 429-442
Rice Case: $\text{PM}_{2.5}$ Intake Fractions

![Graph showing intake fractions for different emission compartments: indoor low, indoor high, outdoor urban, outdoor rural. The graph compares fractions for PM$_{2.5}$, NH$_3$, NOX, and SO$_2$.](image-url)
Rice Case: \(\text{PM}_{2.5}\) Health Impacts

Combining intake fractions and exposure-response

Disability-adjusted life years taking (a) the marginal slope at the working point, and (b) the average from the working point to the theoretical minimum-risk per kilogram of cooked rice (DALY) and percent contribution of total secondary \(\text{PM}_{2.5}\) precursor emissions (%) in the three scenarios

Frischknecht et al. 2016, JLCA 21: 429-442
PM$_{2.5}$ Future Model Refinement

- Finalizing exposure-response (ERF) part
- Secondary PM$_{2.5}$ formation indoors and outdoors
 - Equations, models, data under internal review
- Regionalized effect scenarios
 - ERF data for several archetypes ready for implementation
 - Review of and comparison with spatial models
- Publication of ERF model and final LCIA recommendations
Summary of Recommendations

1. Use **archetypes** with different aggregation levels
 - Generic (in/out) | region/city-stack (out) | building type (in)
 - Regions/building types: f(most influential parameters)
 - Captures variability **better than current spatial models**!

2. Use **matrix-based** exposure & impact framework

3. Include **indoor & outdoor** sources

4. Include **primary PM$_{2.5}$** (done) & **secondary PM$_{2.5}$** (in progress)

5. Consistent connection of **exposure ↔ ERF**
 - Use GBD ERF for all sources
 - For outdoor, start from C_{outdoor} for ERF working point
 - For indoor, start from C_{indoor} for ERF working point (high-end of the ERF curve)

Thank you!

Acknowledgements
All PM2.5 task force members
UNEP/SETAC Life Cycle Initiative

Further reading

Initial guidance on PM2.5: Fantke et al. 2015, JLCA 20: 276-288
Intake fraction modeling framework: Fantke et al. 2017, ES&T 51: 9089-9100
PM2.5 exposure-repsonse: Apte et al. 2015, ES&T 49: 8057-8066
Indoor intake fraction aspects: Hodas et al. 2016, Indoor Air 26: 836-856

UNEP/SETAC PM2.5 task force contact: Peter Fantke, pefan@dtu.dk